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Abstract

�e purpose of our work is to provide an unsupervised deep learning tool that uses predictability of
behavior as a meaningful metric to quantify the di�erences between normal and abnormal behavior in
the context of an experiment where mice receive optogenetic stimulation in their serotonergic neurons
located in the dorsal raphe nuclei. We use generative adversarial networks to learn, on a training subset
of the videos, a baseline behavioral repertoire by predicting future frames from subsequent frames in the
past. By de�ning a predictability index as dissimilarity between the quality of the generated prediction
and the ground truth frame, we are able to determine in which frames a behavior not observed by the
model during training is performed and therefore, we can detect the presence of stimulation by only
analysing the �uctuations of this index that indicate when the mouse is performing behaviors that are
not present in the learnt baseline.
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Chapter 1

Introduction

Understanding brain function is one of the big scienti�c challenges of the 21st century. Brain func-
tion involves a set of processes (e.g. sensory perception, emotion, cognition, learning and memory,
and motor control. One of the main goals of all of these functions is to control behavior. Behavior
allows animals to adapt to di�erent environments, and it is this adaptive function that drove the rapid
evolution of brains across phylogeny [1]. �erefore, if we wish to understand the inner workings of
the brain is crucial that we consider its functions in the context of behavior. To do so, we need accurate
and precise ways to measure behavior.

Measuring Behavior

�e traditional way to measure behavior in neuroscience borrowed from ethology [56], a discipline
focused in understanding and describing behavior in the animal’s natural environment. �e description
is done traditionally by a human observer who would write down the occurrences of speci�c behaviors
de�ned according to a prede�ned criterion , providing a quanti�cation of the behavior from which one
could compute statistics and study di�erent quantitative relationships such as the frequency of a given
behavior, its duration and many others.

Recently, many video analysis tools have been developed to assist on this problem, providing intu-
itive and friendly user interfaces that allow researchers to annotate the relevant information concerning
behavior in a semi-automatic manner ([43], [47],[5]) . Such quanti�cations of behavior can be compared
with various recordings of neural activity allowing for the assessment of measurable correlations be-
tween brain activity and behavior.

Neuroscience has had many breakthroughs related to the emergence of technologies that allow for
mapping, monitoring and manipulation of neural activity based on genetic targeting of speci�c neuron
subtypes [39]. Novel tools such as optogenetics [59] are transforming our ability to understand neural
circuitry and its link to behavior. As stated in [1],

Exploiting this transformative technology is, however, critically dependent on the ability
to assess quantitatively, and with a high degree of spatiotemporal precision, the behavioral
consequences of neural circuit manipulations. However, the technology for measuring be-
havior has not kept pace with the rapid development of these new methods; manual scoring
of behavior is (with notable exceptions described below) still the dominant approach in the
�eld. �is has hampered progress in both understanding the neural circuit control of etho-
logically relevant behaviors and in using behavior as a “read-out” for manipulations aimed
at uncovering fundamental principles of neural circuit function.
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1. INTRODUCTION

Recently we have seen a rise of the usage of machine learning techniques to address this problem
of measuring behavior ([14], [18], [43], [47]). �e basic idea behind most of the current approaches
involve what it is known as supervised learning: a technique within the scope of machine learning
that refers to models that are trained with datasets of labelled examples to recognize speci�c pa�erns.
�e model then, is trained iteratively until it achieves a satisfactory performance on recognizing the
pa�erns within the dataset. For instance, labelled images of a �y freely moving in an arena recorded
with a 2-D camera could be used to train a classi�er to predict what behavior the �y is performing.
�ese approaches, however strong, are limited by the fact that they still require manual annotation of
a large amount of frames in order for the model to work. Besides that, the model will not be able to
learn anything new about the behavior except for the labelled information with which the model was
trained [1].

Unsupervised learning

In order to overcome the di�culties and ine�ciency caused by labelling through human annotation,
it is natural to consider unsupervised learning. �is refers to a group of models that do not require
labels to be trained (like actions or behaviors occurring in a video). �ese models build their own
representation about the data which can then be analysed by an expert so that the scienti�c validity
of that representation can be assessed. Recently, unsupervised approaches have been gaining a lot of
momentum in neuroscience ([8], [6]) due to limitations associated with supervised methods such as
requiring a lot of manual annotation, and not generalizing well on di�erent datasets [1].

While unsupervised models seem to have the necessary requirements to �ll in the gaps associated
with supervised methods, they do not solve the problem of which metrics to choose when a�empting
to quantify behavior. As said before in order to understand the link between behavior and brain func-
tion we need powerful ways to measure behavior. �e potential of these approaches stems from the
adequacy of the models chosen as well as from the metrics de�ned to capture the granular information
one wants to analyse: speed of a mice, body temperature, behavior occurrence and many others are a
few examples of such metrics. All of which are of extreme importance to enable researchers to gather
valuable information about the behavior.

Predictability and Behavior

Within cognitive science, motor cognition is the sub�eld concerned with the integration of research
techniques from di�erent disciplines such as cognitive psychology, behavioral neuroscience and com-
putational modelling a�empting to provide an uni�ed approach to the problem of the organization of
action [20]. One of its main theories states that actions are driven by a central internal representation
rather than by external events and it was �rst developed in 1951 by Karl Lashley [34] who �rst hypoth-
esized that behavior was composed of a series of actions that develop from primitive motor functions
to complex action sequences. �is hierarchy of behavior led to the conclusion that one of its innate
features was predictability, by this we mean, the amount of predictive information about future actions
present in a given behavior in a certain point in the past (from a time scale of seconds and even min-
utes in the future). Although many contributions since then have supported this claim ([24], [10]), not
a lot has been done regarding the quanti�cation of predictability and hierarchy (besides traditional ap-
proaches like hierarchical clustering) in order to assess its relationship with brain function ([5], [49]).
Recently in [5], an a�empt was made to prove the hierarchical nature of behavior through a study
done in �ies, arguing that the results were potentially generalizable across animals. �ey saw that the
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future actions performed by �ies were dependent on previous behavioral states encountered and that
the general organization of behavior could be reduced to a few big general bahaviors, namely: idle,
slow, anterior, posterior and locomotion. �ose behaviors would be the roots in the hierarchical tree of
behavior and would carry most of the information about future actions performed by the �ies.

Within the scope of cognitive science, this concern with the possible hierarchical organization
of behavior is important because it provides important insight on how actions can come in various
grades, from minimal to highly planned with long-term goals. In turn, this points to the possibility of
psychological structure whose richness varies accordingly [20], and could provide evidence about the
distinction between proximal intentions (intentions associated with imediate actions) and distal inten-
tions (intentions associated with future actions) [44]. �is concern with intentionality is paramount
for cognitive science because it refers to the central problem in the �eld related to what is the cognitive
structure of actions and whether or not we can act intentionally. �erefore, quantifying predictability
could lead to insight about the hierarchical organization of behavior which could then help clarify the
problem of the cognitive structure of action.

Our approach

To �ll in this gap we would like to suggest an algorithm that leverages the power of unsuper-
vised learning and the predictability of behavior to identify changes from a learnt baseline behavioral
repertoire measured from video. Our approach adapts an already existing unsupervised architecture
known as multi-scale video prediction adversarial networks [42] to analyse a video dataset of mice in
the open �eld receiving optogenetic stimulation of their serotonergic neurons in the dorsal raphe nu-
clei. �e main idea is to a�empt to quantify how much the stimulation alters the behavior from the
non-stimulated baseline. By training the model on portions of the video where there is no stimulation
and testing it in both conditions we expect that the changes in behavior induced by stimulation can be
captured by an appropriately de�ned predictability index computed by the model and can o�er a way
to quantify how much the stimulation changed the behavior with respect to the learned baseline.

To explain our path in this project from our analysis pipeline to our results we divided this thesis in
�ve chapters: in this �rst chapter we give a brief introduction of the problem and provide an overview
of what it is to come, in chapter two we will give the minimal background in machine learning and
neuroscience (the two areas of interest chosen in this thesis within the scope of cognitive science),
introducing arti�cial neural networks (see section 2.1) (the base of the model we used), as well as
known architectures discussed in this project to solve challenges encountered when doing the analysis
of videos. Also in chapter two, we will talk about our approach to quantify predictability (see section 2.5)
and the relevance of studying serotonin (see section 2.6), a known neuro-modulator widely associated
with brain disorders and behavioral alteration. In chapter three we will explain our pipeline in detail
(see �g. 3.4) showing the entire process from acquiring the video dataset to analysing the �uctuations of
the predictability indexes we de�ned for the mouse. In chapter four we will show the results obtained
(see �g. 4.1) and discuss its validity against the current scienti�c literature. Finally in chapter �ve we
will discuss the potential consequences of these �ndings and possible paths to take in the future.
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Chapter 2

Background

In this chapter, we will give an intuition about arti�cial neural networks. �erea�er, we will brie�y
describe the speci�c architectures used in this work (e.g. convolutional neural networks, capsule net-
works and generative adversarial networks for video prediction [22, 33]). Finally we will give an
overview of the relevance and importance of the serotonergic system to allow the reader to acquire
the necessary intuitions about how the behavior is a�ected by it.

2.1 Arti�cial neural networks

ANNs correspond to a computation technique using a network of simpli�ed models to perform
computations using learning processes. �ey are able to approximate any complex function by de�ning
a training process where the network iteratively learns an association rule between a set of inputs and
outputs. �e network is built out of many simple parameterized computational units [13] whose value
can be updated to continuously adjust the input to the correct output. �ey correspond to a model
inspired by the biology of neurons (see �g. 2.2) , whose objective is to learn a potential mapping that
occurs between inputs such as images (or text, audio, etc…) of, for instance, cats and provide outputs
like: this is a cat.

We take advantage of an analogy to provide an intuition on the functioning of ANNs. When faced
with a picture of a cat (�g. 2.1a), how do we know that this image corresponds to a cat? One possible
reaction would be to respond that we know it because of the presence of features such as: fur, pointy
ears, whiskers. �e problem arises when we consider other images that challenge the assumptions
built upon this choice of salient features. Say that one is confronted with an image in which the ears
of the cat are occluded, as in �g. 2.1b. Now, how do we update our representation of the concept of
cat? More simply: how do we still know that this is a cat? It does not seem likely that humans learn
by having a complete database o� all the features that make up each individual thing, from which we
can deduce a simple equation such as fur+(ears+pointy) = cat. What seems to be the case is that we
acquire information about entities based on examples that somehow relate to them, so when dealing
with pictures of things like cats, we react with what we have learned in a sub-cognitive fashion and
if we are asked how do we recognise a cat we delve into our internal representations and provide a
cognitive expression of the potential constituents that make up the concept cat: it must have fur, it
must have pointy ears and so on. On the next chapter we will illustrate some of the basic steps for
building the mathematical foundation of arti�cial neural networks.
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2. BACKGROUND

(a) (b)

Figure 2.1: Cats. On the le� a cat where the salient features are visible (e.g. ears, whiskers). In panel (b) instead the absence
of the ears makes the recognition of the cat more di�cult. How do we still know that (b) is a cat?

(a) (b)

Figure 2.2: Biological and mathematical neuron. a. Image of a biological neuron with an axon, dendrites and a nucleus.
b. Image of the basic computation of a neuron with the summation, addition of a bias value and an activation function.

2.2 �e mathematics of Arti�cial Neural networks

�e simplest unit of computation in an arti�cial neural network is the neuron. Each input that a
neuron receives has a weight associated with it which represents the importance of that connection
between that speci�c input and that unit. �is neuron applies a nonlinear function to the weighted
sum of its inputs. In symbols, we have

v =
n

∑
i=1

xiwi +b

�e b stands for the bias value: a learnable constant which serves as a threshold for the neuron’s
activation and increases the model �exibility by shi�ing the boundary necessary for a neuron to activate
(see �g. 2.3). But this value can be thought of as another weight that the network learns.

�e main concept to be grasped here is that the synaptic strengths (in this case the weights w are
learnable and control the degree of in�uence as well as its direction (excitatory is a positive weights
and inhibitory is a negative weight) of one neuron over another. A�er the summation the �nal value
passes through an activation function and its output is a value representing how active that particular
neuron is, sending the information to the next neuron where the same computation will happen all the
way to the end of the neural network, layer by layer. A common example for activation function is the
sigmoid function,

f (x) =
1

1+ e−a(v)
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2.2 �e mathematics of Arti�cial Neural networks

(a)

0 5 10 15 20 25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
va

lu
es

Sigmoid function output with different biases
Bias=0
Bias=1
Bias=2

(b)

10 5 0 5 10 15
v values

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
va

lu
es

Sigmoid activation
a = 0.5
a = 1.5
a = 2.5

Figure 2.3: Understanding the role of di�erent parameters. (a) �e bias shi�s the boundary necessary for a neuron to
�re. (b) �e constant value a a�ects the steepness of the curve, here we shown the sigmoid output for the activation for three
di�erent values for the constant a

In this case the expression v represents the feed forward function with the multiplication of the
input by the weights vector plus a bias. A�er that the output is fed to the sigmoid which squashes the
value between 0 and 1.

Biologically the neurons are connected through synapses where information �ows. When we train
a neural network we want the neurons to be more active whenever they learn relevant pa�erns from the
data, and we model this degree of in�uence using the activation function that squashes values between
0 and 1 (in the case of a sigmoid) which represents how active that neuron is.

A�er this process is done and the input has passed through the entire neural network, an error
value is computed for the output (for supervised learning models). �is error corresponds to how far
the output was from the real data. Usually there are two ways of computing an error: an unsupervised
and a supervised way. �e supervised way uses labels which correspond to the correct output value for a
given input and they are usually assigned manually by the designer of the network. In the unsupervised
se�ing, there are no labels and the model learns from the training data itself. �ere are many ways to
calculate this error in both se�ings but the idea to keep in mind is that the error or cost function is
a rule that teaches the network how far o� it is from learning a correct representation of the data for
a given problem. �e error value computed will be propagated back to adjust the weights in order to
minimize the output value of the error function. �is process is known as backpropagation [50] and
the most common algorithm to implement it is gradient descent [2].

Gradient descent is an algorithm that computes iteratively the partial derivative of the error func-
tion with respect to each weight (the gradient), which corresponds to the right amount of adjustment
that each weight needs to minimize the error function, meaning that it indicates the direction of steep-
est descent in the landscape of this error function, taking it closer to a minimum, where the output
error is low on average.

In summary: a neural network is a model de�ned in a layer-wise structure that is able to approxi-
mate any complex function by optimizing a process of minimizing a pre-de�ned cost function. �ere
are many types of networks from deep networks to shallow [37], convolutional networks [31], siamese
networks [30] and many others, all of them subscribe to this basic architecture of layers, neurons and a
learning cycle de�ned by this goal of minimizing an error function [37]. �e goal of this section was to
provide an overview of the basic concepts behind this process so that the explanations that will follow
can tap into these intuitions and help our reader understand the methods implemented here to analyse
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2. BACKGROUND

Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Input 4

Input 5

error

Update process

Figure 2.4: Schematics of the backpropagation algorithm in arti�cial neural networks. A summation function is
applied to the inputs from the previous layers, followed by an activation function. An error is computed at the output layer
and propagated back through an update process.

behavior.

2.3 Convolutional Neural Networks

CNNs (see �g. 2.5) are a type of neural network that resembles the connectivity pa�erns of neurons
in the visual cortex [36]. It has been shown that individual neurons are spatially selective to speci�c
regions of the stimuli known as the receptive �eld [25], these networks are able to successfully capture
the spatial dependencies in an image through the application of relevant �lters that represent this se-
lectivity observed in neurons from the visual cortex. �ese types of networks have been shown to be
a be�er �t to image datasets since these convolutional architectures make the explicit assumption that
the input is an image that allows us them to encode certain properties into the architecture making the
forward function more e�cient (forward function refers to the process of the input passing from the
input layers to the output layers in a neural network). In other words, the network can be trained to
understand the diverse set of pa�erns with local dependency in an image be�er than regular neural
networks [35, 32].

2.4 Generative Adversarial Networks

Generative Adversarial Networks GANs are a type of deep learning model architecture �rst in-
troduced in [22] that tackles the problem of density estimation, meaning, the problem of �nding an
estimate based on observable data of an unobservable underlying probability density function. �at
can be translated into trying to �nd how likely it is that a given sample came from a given distribution
[23]

�e basic architecture of GANs is the following: two deep neural networks (usually fully connected
networks or convolutional networks) are joined together on a competitive structure: one is called the
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2.4 Generative Adversarial Networks

Figure 2.5: Convolutional network example to classify handwritten digits. On the le� we see an example of the digit
2. It goes through, (in this particular example) two 5x5 kernels (or �lters) and two max pooling layers (downsample stage of
the convolutional network through the application of a �xed function that reduces the dimensionality of the input). A�er the
last max pooling layer the input is �a�ened and then it goes through a fully connected layer (a normal neural network layer)
where it gets turned into a probability of being a certain digit (multi-class classi�cation). (�is image was taken from [52])

generator, and the other the discriminator. �e generator iteratively a�empts to capture the data distri-
bution. Given a certain dataset of images for example (such as cats or handwri�en digits) the generator
takes as input a random vector and tries to produce images similar to them. On the other hand the
discriminator estimates the probability that a sample came from the training data rather than from the
generator (see �g. 2.6). In essence what GANs do is to learn a transformation of an input from a noise
distribution (random values with the same shape as the input) to the training data [22]. �e objective of
the discriminator is, given a certain example from a distribution, to detect whether this example came
from the generator’s distribution or from the real data distribution. A side-e�ect of the discriminator’s
objective function is that as the generator gets be�er at producing fake samples, the discriminator will
also get be�er at distinguishing between real and fake. �e ultimate goal of this entire process is to have
a generator that can confuse the discriminator so well that the discriminator outputs a 50% probability
of that sample being real, meaning it can not distinguish between them (see �g. 2.7).

Usually the way generative models work is that they a�empt to minimize an explicit density func-
tion (such as PixelRNNs or Variational Autoencoders) [46],now for GANS there is no explicit density
function. �ey take a game-theoretic approach where both networks compete against each other in
a 2-player minmax game [41], where the objective function of the generator is to minimize the log-
probability of the discriminator being correct and the objective function of the discriminator is to max-
imize its chances of being right [22].
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2. BACKGROUND

Figure 2.6: Generative Adversarial Networks framework. �e generator learns a transformation from the input noise
vector to the real distribution of handwri�en digits while the discriminator learns to separate the real data (actual handwri�en
digits) from the one generated by the generator (fake images of handwri�en digits). �is image was taken from [55]

Figure 2.7: Optimal learning for GANs. �e do�ed black lines represent the distribution of the real data, the continuous
green line represents the distribution of the generator and the dashed blue line represents the discriminator. (a),(b),(c) Across
epochs the generator approximates more and more to the real distribution to the point when we arrive at (d) where the
discriminator is a �at line with 50% chance of separating between real and fake, meaning it can not successfully distinguish
between both. �is image was taken from [22]

2.5 Multi scale video prediction with Generative Adversarial
Networks (MVGANS)

Our goal was to quantify behavioral changes in mice during an experiment that involved some
perturbation of the behavior baseline, an optimal model would be one that could represent internally
the dynamics and content of the evolution of a video sequence. �e model we used in this project was
adapted from [42], where they present a model that o�ers a good approach to model the dynamics
of video sequences. �ey took a multi-scale approach combined with an adversarial strategy to train
convolutional networks to predict the future of frames given a certain limited past history. By doing
that they were able to produce images of remarkable quality indicating that this might be a good path
for unsupervised learning research.

�e idea of video prediction refers to the problem of modelling video data, meaning how well can one
predict the future of a certain video sequence given a certain number of past frames. It is a challenging
problem because it involves high-dimensional natural-scene data with complex temporal dynamics
[45], but it has been shown to be useful as a tool to model the dynamics of a sequence of images [42].

�is type of model looks at a stack of a certain number of frames and tries to predict the entire frame
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2.6 Serotonin

Figure 2.8: Prediction of future frames. On the extreme le� the image represents the ground truth image from a clip of a
man walking from le� to right. On the right where the yellow tag is placed each box represents a prediction for what that
ground truth image should be given an input of a history of past frames [3].

(a) (b)

Figure 2.9: PSNR comparison. (a) Image with perfect psnr: 100. (b) Blurred image with a lower psnr value: 39.52

a certain interval in the future. By doing this iteratively it learns to represent the changing dynamics
of the video sequences that it sees (see �g. 2.8). To evaluate the quality of the images produced by
the generator, they used standard image quality metrics: the PSNR (peak signal to noise ratio) and
sharpness di�erence between the gradient of ground truth images and the predictions. �e PSNR is
calculated as a ratio between the maxŶ (the maximum possible value of pixel intensity in the predicted
image) and the mean squared error di�erence between ground truth image pixels and the pixels from
the predictions. �e equations for the both can be seen below.

PSNR(Y,Ŷ ) = 10 · log10 ·
max2

Ŷ

∑
n
i=1(Yi− Ŷi)2

Sharp.di f f .(Y,Ŷ ) = 10 · log10 ·
max2

Ŷ

∑i ∑ j |(|Yi j−Yi−1 j|+ |Yi j−Yi j−1|)− (|Ŷi j− Ŷi−1 j|+ |Ŷi j− Ŷi j−1|)|

2.6 Serotonin

Serotonin or as it is known in the neuroscienti�c community: 5-HT (5-hydroxytryptamine) is a
major neuromodulator considered to be one of the most important pharmacological targets in the treat-
ment of psychiatric disorders such as anxiety and depression [57]. A centered theory of 5-HT function
has been elusive due to the the heterogenous nature of its known behavioral e�ects [16].

Serotonin is produced by a speci�c group of neurons found in an area at the base of the brain called
the raphe nuclei. From there, serotonin is released into other parts of the brain to in�uence di�erent
behaviors (see section 2.6). Although drugs that target serotonin are widely used as antidepressants,
how this chemical signal acts in the brain remains largely unknown.
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2. BACKGROUND

(a) (b)

Figure 2.10: Schematics of the serotonergic system simpli�ed (a) Here we give a simpli�ed schematics of the main parts
of the serotonergic system of a human brain. �e raphe nuclei is the region of the brain responsible for the majority of
the forebrains input of serotonin. It projects to the thalamus (located just above the brain stem between the cerebral cortex
and the midbrain whose main function is to relay motor and sensory signals to the cerebral cortex). Also projects to the
hypothalamus (located at the base of the brain it is responsible for many things such as control of the appetite and regulation
of emotional responses), to the cerebellum (also located at the base of the brain it is responsible for coordinating voluntary
movements) and to the spinal coord (a long, thin, tubular structure made up of nervous tissue, which extends through the
vertebral column), (image adapted from [4]). (b) Here we see a similar schematics for the mouse brain. MR stands for median
raphe and DR for dorsal raphe. �ere are many similarities between the serotonergic system in humans and mice and, the
la�er is usually used as a proxy to understand how the human serotonergic system works (image taken from [38]

Serotonin modulation has a wide spread and diverse e�ect on behavior, e.g. it seems to a�ect the
underlying factors that motivate actions [9] and to drive behavioral inhibition [12], [54]. �is theory
was motivated by data showing that 5HT depletion increases startle responses [15] and locomotor
activity [21], [19] by altering the impact of the future motivating outcomes.

Given this complex landscape it is imperative that both the behavioral output and the tools we use
to analyze the consequences of activating these speci�c neurons are rich and complex enough so that
we can derive from them meaningful insights about the dynamics underlying the serotonergic system.

2.7 Related work

A recent study used optogenetics on serotonin-producing neurons in the dorsal raphe nucleus of
mice [11] and found that by triggering serotonin production in the DRN (the major source of serotonin
input to the forebrain) through phasic activation for a few seconds caused the mice to move around more
slowly as they explored their surroundings. �is short-term release of serotonin was found to be context
dependent, meaning that the decrease in speed was only perceived when the mouse was spontaneously
moving around a box without a clear goal such as �nding water or balancing on a moving object.
�is context dependence was considered to be an indicator that serotonin was negatively a�ecting an
individual’s motivation to move since they found nor motor (like impairment) or anxiety e�ect that
could explain the decrease in speed. On the other hand, they also found that repeated daily phasic 5-
HT activation of the DRN neurons resulted in a long-term enhancement of locomotion, which means,
if those neurons were activated daily a�er a certain amount of time the mice got faster.

�ese �ndings seem to support the idea that serotonin causes some change in the behavior reper-
toire that seems to be associated with motivation but does not describe what these changes look like.
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What else can we detect? Is there any other read out from the behavior that could indicate serotonergic
activation?

It would be interesting to see if there are other changes associated with stimulation but current
methods to analyze the behavioral output of mice in open �eld are limited by factors such as the slow
nature of manual annotation of behavior, its subjective and imprecise nature and its low dimensionality
[1], [17]. On the other hand, in the last decade we have been watching a rise of automated approaches
to behavioral analysis that seem to tackle a lot of the issues encountered in this �eld. Given the re-
cent progress in machine learning models both in supervised and unsupervised se�ings [1], automated
assessments of behavior seem to represent the future of how we understand behavior.

A�empts to characterize behavior in a unsupervised manner are not completely new. In [58] they
tried to answer the question of what are the minimal components that underlie behavior and found a
computational model that revealed structure in mouse behavior without observer bias. �ey saw that
mouse behavior seems to be composed of stereotyped sub-second modules (behavior segments that
last less than one second) with de�ned transition probabilities that arrange themselves to form big and
semantically meaningful behaviors. �ey performed an unsupervised analysis to reveal how genes and
neural activity impact behavior and concluded that these identi�able components were organized in a
predictable fashion. �e framework proposed could be useful to unravel the in�uence of environmental
cues, genes and neural activity on behavior. In a following paper (by the same lab), it was discovered that
this modularity of behavior might be encoded in the dorsolateral-striatum and that this region seems
to �exibly assemble behavioral sequences from sub-second components [40]. �ese discoveries point
to unsupervised learning as a powerful tool to describe behavior given that impressive range of their
results although their approach had assumptions that make the model not completely unsupervised.
However they did not provide tools to quantify activation of subset of neurons that might cause change
in behavior, so although the framework is extremely rich it does not provide a clear path to quantify how
di�erent regions of the brain a�ect behavior in comparison to a learned baseline. In our work we would
like to extend the literature by providing a method based on GAN s to quantify this distinction between
baseline and non-baseline behavior allowing for unsupervised detection of brain speci�c stimulation
from analysis of raw video of behaving mice.
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Chapter 3

Methods

In this chapter we will give a detailed description of all the procedures and algorithms utilized in
this project. As a disclaimer we must note that the capsule network model and the generative model
were already implemented by researcher Ma�ia Bergomi upon the arrival of the author of this thesis
in the Champalimaud Foundation. �e contributions of this thesis are not on the realm of introducing
novel machine learning architectures but on its usage for behavior analysis as well as developing the
pipeline for integration of the algorithms along with writing a graphic user interface, performing the
data analysis and writing custom algorithms to deal with problems related to the alignment of the
pose of the mice that will be detailed below. Also, helper functions were wri�en to aid the already
implemented models to perform tasks such as �ne-tuning of the segmentation model, training and
testing of the generative model and others. �e main contributions and procedures developed within
the context of this thesis will be detailed below.

On the �rst section of this chapter we will discuss the dataset and inform the reader about the
protocol of stimulation and the source of the dataset for context �g. 3.1. In the second section we
will discuss the problem of segmenting the mice in the open-�eld arena where they were recorded
�g. 3.3, along with a description of the challenge of segmenting mice in such conditions we describe
the graphic user interface developed in the python programming language to aid on the preprocessing
of the videos as well as their segmentation. Together with this explanation we will demonstrate the
need for the architecture used and we will provide an intuition for why it was relevant to this speci�c
problem. On the third we de�ne the pipeline of the unsupervised detection of the mice as well as our
assumptions about predictability and the model used, its loss function, training procedure and relevance
for the problem of analysing behavior. In the fourth section we show how we produced videos of mice
where their pose was aligned with the north-east corner of the frame to investigate if the detection was
still possible, even in situations where there was no displacement speed; we also demonstrate why this
was a relevant problem to pursue. On the last section of this chapter we will give a brief list of all the
frameworks used for the execution of this project. A diagram of the entire pipeline for this project can
be seen here �g. 3.7.

3.1 �e dataset

�e dataset we used was provided to us by [11]. It is composed of videos of mice moving around
in the open �eld arena, a widely used assay to study locomotion and anxiety-like behavior ([53]). �e
mice were subjected to a protocol of optogenetic activation of their serotonergic neurons located in the
dorsal raphe nuclei to assess the behavioral e�ect of this neuromodulator in the spontaneous behavior
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3. METHODS

Figure 3.1: Stimulation protocol. Videos of average 30 minutes were divided in blocks of 5 minutes that alternated between
stimulated block and non-stimulated block. Both blocks were divided in trials of 10 seconds, of which, during stimulated
blocks, the protocol of activation of the neurons with a light stimulus was 3 seconds light on and 7 seconds light o�. During
non-stimulated blocks there was no activation but the division in trials of 10 seconds was kept to allow for comparison. �is
image was taken from [11].

of the mouse. We would like to give a quick explanation of their protocol of stimulation to provide
context for the analysis that we did using the same dataset.

�e protocol of stimulation

�e experiment lasted on average 30 minutes although a few videos were longer up to 45 minutes.
�e videos were divided into blocks of 5 minutes where during each block the mouse was either being
stimulated or not being stimulated (�g. 3.1). Every video began with a non-stimulation block and then
it would alternate between stimulated and not stimulated. While in a stimulation block, the period
where the mouse was actively receiving a light stimulus that activated the serotonergic neurons lasted
3 seconds followed by a 7 seconds of no light and repeat till the end of the 5 minutes block. What we
called trials in this thesis refers to this 10 seconds period of 3 seconds light on and 7 seconds light o�,
and during the non-stimulation period the trials were divided in the same manner but there was no
activation with the light. To understand be�er this process of activation through a light stimulus (a
technique formally known as optogenetics) see [59].

3.2 Capsule Networks for segmentation

Why Capsule Networks?

To be able to run our model on images of freely moving mice, we segmented the frames of the
videos in order to subtract the background from the foreground of the images (in our case we wanted
a video of only the mouse moving around without any other interference).

Object segmentation is a di�cult problem. �e task itself can be described as the combination of
two problems: object recognition and object delineation. On the object recognition side, the objective
is to locate the presence of an object inside of an image. On the delineation part, the challenge is to
draw the object’s spatial extent and composition. Solving these two problems together results in the
separation of foreground (the intended object to segment) and the background (everything else) [33].
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3.3 Unsupervised detection of non-baseline behavior with MVGANs

Early a�empts in automated object segmentation relied on rule based systems where a complex sys-
tem of rules were de�ned to teach a machine to automatically distinguish foreground from background.
Over the last few years, deep learning based methods particularly convolutional neural networks [35]
became the state of the art in all sorts of tasks related to image analysis including segmentation [48].

However, the computational units on CNNs are ambivalent to the spatial relationships of the units
within their �lter of the previous layer and, therefore, within their e�ective receptive �eld of the given
input [33]. Recently, a new architecture has been introduced to the public: capsule networks. In these
networks [51] information is stored as vectors rather than scalars as it is the case of CNNs. Within
these vectors there is information concerning: spatial orientation, magnitude/prevalence and other
a�ributes of the extracted features. All of this information is stored into what the authors called capsules
which are routed to capsules in the next layer via an algorithm that takes into account the agreement
between these capsule vectors. �is architecture allows these capsules to form meaningful part-to-
whole relationships not found in a standard CNN. [33].

Implementation

A mouse implanted with an optogenetic drive, its color, bedding and implant make it impossible
to segment this image with standard thresholding techniques. Background subtraction is minimally
e�ective, given the stereotypical locomotion of a mouse (when freezing or resting the mouse would be
subtracted). At the same time, relying on optic �ow would not be robust to occlusion. To solve this
problem, we adapted the SegCaps network [33], a capsule network [51] version of Unet [48] for the
analysis of 2-dimensional images. �e model was trained on a dataset of natural images and �ne-tuned
to our dataset of images of mice moving around the open �eld. Convolution and deconvolution capsule
layers learn equivariant relationships with respect to complex transformations of the input. �at means
that the model can build a representation of the input that encompasses part-to-whole features like the
body part relationships of a mouse. �e enhanced generalization power of capsule networks enables
segmentation of complex images without relying on optic �ow analysis or dynamical constraints.

Graphic user interface for thresholding and segmentation

To use the model e�ectively we developed a user friendly interface to interact with it as well as
perform preprocessing on the frames of the videos. For that we developed a customized graphic user
interface to facilitate these processes �g. 3.2. �e functionalities of the GUI involve:

• Basic thresholding

• Basic blob extraction

• Direct interaction with the segmentation model for segmenting entire videos

• Fine-tuning of the model to improve performance on novel datasets.

3.3 Unsupervised detection of non-baseline behavior with MVGANs

Our general goal was to learn a behavioral baseline, in an unsupervised fashion, in order to detect
relevant �uctuations from such baseline. To do that we developed a deep-learning-based method for
quantifying �uctuations in behavior with respect to a learned baseline �g. 3.4. Both spatial and temporal
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3. METHODS

(a) (b)

(c)

Figure 3.2: Graphic user interface for preprocessing and segmentation. (a) Initial window where the video can be loaded
and some information is provided like frame rate and the videos’s resolution. (b) Preprocessing window where thresholding,
dilation, blob extraction can be performed on the entire video. Also a mask generation option is o�ered where the user can
produce a dataset of masks of the current frame to �ne-tune the segmentation model. (c) A segmentation window where the
user can interact with the segmentation model to segment entire videos. If the results are not optimal the user has an option
of �ne-tunning the model to their dataset.

organization of events are taken into account in learning baseline behavior, and then are used to assess
the predictability of new events. We applied it to raw behavioral videos of mice moving around the
open-�eld arena to test if we could detect the behavioral e�ect of serotonergic stimulation. Before we
go further with the explanation of the pipeline we must de�ne brie�y what we mean when we use the
term predictability.

Predictability

By predictability we mean the degree to which a correct prediction can be made about the future
of a certain system’s state[7]. In our case we consider predictability to be a meaningful feature of
behavior itself and we de�ned a metric (�g. 2.9) that enabled us to quantify how predictable a certain
con�guration of the entire body of the mouse was. With this information we investigated if we could
acquire insight about the behavior by assessing the �uctuation of this metric during baseline behavior
(non-stimulated) and non-baseline behavior (stimulated), where a higher value corresponds to a more
predictable con�guration and vice-versa.
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3.3 Unsupervised detection of non-baseline behavior with MVGANs

(a) (b) (c)

conv

conv caps

deconv caps

Figure 3.3: Segmentation with Capsule Networks. Segmentation of a video frame of a mouse in the open �eld. (a) Input:
A mouse implanted with an optogenetic drive moving around in the open �eld arena. (b) Pre-trained 2D SegCaps: �e
architecture of the SegCaps network [33]. (c) Output of the model, a�er training on segmentation of natural images and light
thresholding to eliminate small blobs.

Experiment procedure

We considered videos of mice in open-�eld receiving optogenetic activation of dorsal raphe sero-
tonin neurons (see �g. 3.1). First, we applied a semi-supervised segmentation method using capsule
networks [33] to remove the noise produced by the background and �ber optic cable (see �g. 3.3).
A�erwards, multi-scale video prediction generative adversarial networks (MVGAN) [42] were used to
learn a behavioral baseline directly from non-stimulated video segments. �e network architecture can
be found in 3.1 and although the explanation of the algorithm can be found in [42] we will also provide
it here to strengthen the understanding of our approach.

�emodel

As stated in [42], consider two sequences Y and X where Y = Y , .....,Y n and X = X , ....,Xn. Y is
the sequence of frames to be predicted from input X . A network G is trained to predict one or many
concatenated frames Y by minimizing a distance lp (where p = 1 or p = 2) between the predicted frame
and the true frame,

Lp(X ,Y ) = lp(G(X),Y ) = ||G(X)−Y ||pp (3.1)

�e problem is that a network trained like this would face two problems: loss of resolution due to
the fact that convolutions (the process performed by �lters in a convolutional network to learn features
from the images) only accounts for short-range dependencies that are limited by the size of the �lters.
�e second problem is that using l1 and l2 usually yields blurry results. Imagine that the probability
distribution for an output pixel has two equally likely possibilities, the value that would minimize l2
would be the average between both even if this value has a very low probability on the distribution. In
the case of l1 would be the median but still the results would be too blurry.

To tackle these problems the authors in [42] proposed two strategies: a multi-scale network and
the adversarial training.
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3. METHODS

�e multi-scale network

Instead of making G predict over only one resolution of the input (the standard way to train gen-
erative models based on convolutional networks) the authors proposed a multi-scale architecture. Let
s1, .....,sn be the sizes of the inputs to the network. Let uk be an upscaling operator toward size sk (we
used four sizes [4,8,16,32]). And let X i

k, Y i
k denote the downscaled versions of X i and Y i of size sk and

G′ be a network that learns to predict Yk−uk(Yk−1) from Xk and a guess of Yk. A network Gk is de�ned
that makes a prediction Ŷk of size sk,

Ŷk = Gk(X) = uk(Ŷk−1)+G′k(Xk,uk(Ŷk−1)). (3.2)

With this the networks makes a series of predictions, starting from the lowest resolution and using
the prediction of size sk as a starting point to make the prediction of size sk+1. In the beginning of
training the network takes only X1 as input. �e network architecture is shown in 3.1. �e weights are
denoted by WG and the minimization in our case is performed with the Adam optimizer [29]. In [42]
they used stochastic gradient descent but in our case we found this optimizer to be more e�ective.

Adversarial training

Although in [42] was found that the multi-scale network helped reducing the blurriness of the future
predictions, the results were still too blurry. In our case having blurry results would be even worst
given that predicting a blurry con�guration of the mouse would not tell us much about the behavior.
To solve that, the authors proposed an adversarial strategy [22]. Now G is trained simultaneously with
a discriminator D (both models are based on convolutional networks ([35]), to acquire an intuition for
how these networks work see 2.3). �e generative model G takes as input a sequence of frames and is
trained to output a prediction for the future of that sequence a certain number of frames ahead, meaning
it learns to generate a prediction for what the entire future frame of that sequence would look like. �e
discriminative model D takes as input a sequence of frames, and is trained to predict the probability
that the last frames (Y n) of that sequence is generated by G. Remembering that only these last frames
are either generated by G or real frames from the video. With this procedure the discriminative model
is able to leverage temporal information and therefore G learns to produce images that are temporally
coherent with its input.

�is strategy addresses the problem of predicting averages of possibilities as we stated before. Us-
ing an adversarial strategy when we have a sequence (X ,Yavg), D will be able to discriminate them
easily. �e only pairs of images D will not be able to discriminate easily are sequences that have equal
probability, therefore, the generator will learn how to approximate the distribution that resembles the
distribution of possible future frames Y .

D is trained to classify the input (Xk,Yk) as 1 (a sequence of frames and a real frame), and to classify
(Xk,Gk(X)) as 0, where k is the scale of the input, for which we perform one iteration of the Adam
optimizer over Dk while keeping the weights of the generator �xed. �e loss function used to train D
is:

LD
adv(X ,Y ) =

Nscales

∑
k=1

Lbce(Dk(Xk,Yk),1)+Lbce(Dk(Xk,Gk(X)),0) (3.3)
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3.3 Unsupervised detection of non-baseline behavior with MVGANs

Lbce is the binary-cross-entropy loss, de�ned as

Lbce(Y,Ŷ ) =−∑
i

Yilog(Yi)+(1− Ŷi)log(1−Yi) (3.4)

where Yi takes values in {0,1} (can be either 0 or 1) and Ŷi takes values in [0,1] (can be any values
within 0 and 1.

To train G we keep the weights of D �xed and perform one optimization step withAdam to minimize
an adversarial loss,

LG
adv(X ,Y ) =

Nscales

∑
k=1

Lbce(Dk(Xk,Gk(Xk)),1) (3.5)

Minimizing this adversarial loss means that G is a�empting to confuse D as much as possible so that
D will not be able to discriminate predictions correctly. �e problem here is that this does not guarantee
that G will learn to generate images that are similar to Y because it can always produce confusing
samples without them being closer to Y . To �x this problem in [42] was introduced a composition of
the adversarial loss and the Lp loss described earlier. G now is trained to minimize λadvLG

adv +λlpLp.
By having to minimize this, the model has a tradeo� to adjust by the mean of the parameters λadv

and λlp . From the �rst term similarity based on sharp predictions given the adversarial principle and
similarity with the real image enforced by the second term that minimizes an lp loss. A description of
the algorithm can be found in Algorithm 1.

Set the learning rates pD and pG, λadv and λlp

while not converged do
Update the discriminator D
Get M data samples (X ,Y ) = (X1,Y 1), .....,(XM,Y M)

WD =WD− pD ∑
M
i=1

∂LD
adv(X

i,Y i)
∂WD

Update the generator G
Get M new data samples (X ,Y ) = (X1,Y 1), .....,(XM,Y M)

WG =WG− pG ∑
M
i=1(λadv

∂LG
adv(X

i,Y i)
∂WG

+λlp

∂LG
lp (X

i,Y i)

∂WG
)

end
Algorithm 1: Training adversarial networks for next frame generation

Another strategy introduced by [42] to sharpen the image prediction is penalizing the di�erences
in the gradients of the predictions in the generative loss function. With this they de�ned a novel loss
called Gradient Di�erence Loss (GDL) that can be combined with the other mentioned losses here to
produce be�er results. �is function between the ground truth and the prediction can be de�ned as,

Lgdl(Ŷ ,Y ) = ∑
i j
||Yi, j−Yi−1, j|− |Ŷi, j− Ŷi−1, j||α + ||Yi, j−1−Yi, j|− |Ŷi, j−1− Ŷi, j||α , (3.6)

here, α is an integer value greater or equal to 1 and |.| represents the absolute value function. �is loss
penalises gradient di�erences between the prediction and the true output by considering the neighbor
pixel intensities di�erences.

�e �nal loss we used (as the authors in [42]) combines all of the above on a �nal expression,

L(X ,Y ) = λadvLG
adv(X ,Y )+λlpLp(X ,Y )+λgdlLgdl(X ,Y ) (3.7)

We trained the model on non-stimulated blocks of the videos and tested in both blocks of stimulated
and non-stimulated (we always le� one block of non-stimulated for testing). We used stacks of 10
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Figure 3.4: Pipeline overview for unsupervised detection. (a),(b) Segmentation with capsule networks of freely moving
mice in the open �eld arena.(c) Application of multi-scale generative adversarial networks model. (d) Analyses of the �uc-
tuations of the PSNR and sharpness of stimulated (gold) and non-stimulated (green) portions of the video. (e) We applied
k-means algorithm (k = 2) �g. 3.5 to de�ne an unsupervised threshold for stimulation (the red portion of the �uctuation
means the unsupervised detection of the stimulated mice) computed as the mean of the centroids found.

frames as input and predicted for three intervals in the future: 5, 10, and 15 in individual videos. �e
best results were found with an interval of 10 which is the protocol used on the entire dataset along
with minibatches of 1.

DISCLAIMER. �e description of the above algorithm was taken from [42] in its almost entirety
and shown here with the purpose of providing an explanation for the computations behind our model
and our calculation of the predictability index. It does not represent an original contribution of this
thesis, nor was it implemented by the author of this thesis. �e work described here was to use and
adapt this architecture to �t our problems which involved minor issues of ��ing and adapting to our
dataset as well as apply it to obtain the results with which we performed the detection.

PSNR and sharpness as predictability indexes

When we test the model (trained on portions of the video where the mouse was not stimulated) on
both non-stimulated and stimulated portions of the video, the quality of the predictions measured in the
PSNR and sharpness provided what we call a predictability index. �is index means that higher values
indicate that the future of that particular portion of the video was more predictable, and were used
to explore the deviation from baseline. �e trends of these metrics in stimulated and non-stimulated
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3.3 Unsupervised detection of non-baseline behavior with MVGANs

Generative network scales G1 G2 G3 G4

Number of features maps 128,256,128 128,256,128 128,256,512,256,128 128,256,512,256,128
Conv. kernel size 3,3,3,3 5,3,3,5 5,3,3,3,5 7,5,5,5,5,7

Adversarial Network scales D1 D2 D3 D4

Number of features maps 64 64,128,128 128,256,256 128,256,512,128
Conv. kernel size (no padding) 3 3,3,3 5,5,5 7,7,5,5

Fully connected 512,256 1024,512 1024,512 1024,512

Table 3.1: MVGANs architecture Four generators and four discriminators are outlined here because the network uses a
multi-scale architecture and the input passes through the network four times at increasingly bigger scales. For more details
see [42]

One dimensional values of PSNR

Kmeans for detection
Non-detected values
Detected values
Threshold of detection

Figure 3.5: Kmeans detection example.�e threshold value is calculated as the mean between the two centroids found.
�e input to the kmeans is the entire dataset of PSNR for all videos averaging across trials including both stimulated and
non-stimulated moments. �e example shown here is just to clarify the concept and does not involve real data.

segments were used to detect the e�ect of the serotonergic stimulation, and quantify this e�ect.
As explained in section 2.5 the PSNR and sharpness are metrics for comparing images. In our case

the model predicts an image given a stack of past frames and, the quality of this image according to
the referred metrics is considered to represent how predictable that image was given that input. So
through out the course of this thesis we will refer to the �uctuations of the PSNR and sharpness as the
predictability indexes of the mouse, given that the images the model is predicting are solely composed
of the mouse con�guration segmented from the background.

Using k-means to acquire a threshold for detection

We used the k-means algorithm (k = 2) [26] on the one-dimensional �uctuation of PSNR (for sim-
plicity we only show PSNR but sharpness gave similar results) to set a threshold for what would be
considered the frontier between detected non-baseline behavior and non-detected behavior. A scalar
value that separates what was detected from what was not (see �g. 3.5). �is threshold is calculated as
the mean of the two centroids found with the kmeans.
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3.4 Pose alignment procedure

We also applied the model in a processed version of the same videos where the bodies of the mice
were aligned with the north-east corner of the frame so that we could capture only variations in the
pose (postural movement). We did this to assess whether our detection of the stimulation e�ect on
behavior was over-reliant on the displacement speed of the mouse, meaning, maybe we were capturing
only variations related to speed of the mouse moving around the box and not more granular information
related to the di�erence in the body postures. By doing this analyses we could investigate if there were
changes in posture closely related with the stimulation by evaluating whether the predictability of the
con�guration of the poses of the mouse would change according to the stimulation.

Protocol

First, we tracked the mouse by tracking the location of the centroid of the frame a�er thresholding
our segmented videos. �is thresholding worked well because the segmentation had already excluded
all the undesired information (see �g. 3.3). We used the coordinates of this centroid obtained from our
tracking to crop a bounding box of 256X256 pixels around the mouse in the original video to acquire
a high-resolution video of the mouse moving around where the animal is always in the center of the
frame. We segmented this cropped video to eliminate the same problems with the original. �en, at
each frame, we tracked the head of the mouse using deeplabcut [43]. We applied principal component
analysis [28] to the entire image to acquire an axis corresponding to the orientation of the mouse and
we aligned the mouse with the north-east corner of the frame by rotating the entire frame to coincide
with the alignment of the mouse’s axis. We used the coordinates obtained from the tracking of the head
to make sure that when the PCA gave the wrong axis (because the mouse was in a stationary position
for example and it confused the correct orientation) we could make sure that it would continue aligned
correctly. By taking into account the orientation we assure that the head of the mouse is always pointing
to the north-east corner. We �nally generated videos of the mouse where the only changing factor in
the frames corresponded to postural movements of the mouse without any displacement or rotation
(see �g. 3.6).

3.5 Frameworks

For the completion of this project we used only the python programming language for the data
analysis, GUI development and all of the programming tasks required. A gitlab link with the source
code will be provided to the examiners of this thesis but could not be disclosed here due to the fact that
this is still unpublished material.
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3.5 Frameworks

(a) (b)

(d)(c)

Figure 3.6: Pipeline pose alignment. (a), (b) We obtained the coordinates from the centroid of the mouse in the freely
moving videos and cropped a square of 256X256 pixels around it. (c) We segmented this cropped video (d) We aligned the
pose of the mouse with the north-east corner.
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Figure 3.7: Pipeline diagram for the entire project. In this diagram we present an overview of the entire process, the
white boxes on the corner refer to the sections where the reader can �nd detailed information about the procedure referred
in the box. Light blue boxes represent the input or output from a given process and dark blue boxes represent the process
being done.
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Chapter 4

Results

Here we present the results regarding the application of the MVGAn model to videos of freely
moving mice. We saw a signi�cant increase in predictability of the mice during the stimulation and,
we were able to detect the e�ect of the stimulation using segmented videos without supervision. �is
increase was highly correlated with speed which indicated, as we would expect, that a slow mouse
is easier to predict. Finally, we found that these results were not entirely dependent on displacement
speed (speed of moving around in the box), given that we also found an increase in predictability on
videos of mice where their pose (their full body) was aligned with the north-east corner of the frame
(see �g. 3.6). On those videos, we captured only changes in body posture without displacement across
the box and we were also capable of detecting the stimulation without supervision.

4.1 Serotonin stimulation increases the predictability of the
con�guration of the mouse when freely moving in the open �eld

When testing our model on videos of freely moving mice in the open �eld arena, we saw a signi�-
cant increase of predictability in stimulated mice during stimulation trials (see �g. 4.1). For PSNR and
sharpness we found a signi�cant increase on predictability both for individual mice and for the average
across mice for all trials.

4.2 Unsupervised detection of Serotonin stimulation in freely
moving mice

We also found that it was possible to perform unsupervised detection of the behavioral e�ect of
the stimulation, by se�ing a threshold value for the predictability index (see 3.3) using the K-means
algorithm on the 1-dimensional data of the �uctuation of the this index. Again, both for sharpness
and PSNR, we were able to detect when the behavior was signi�cantly modulated by the stimulation
both for individual mice and averaged across videos of all mice (see �g. 4.2). Our ability to detect
deviations from baseline behavior, caused by the optogenetic stimulation without any assumption about
the stimulation protocol shows that it is possible to perform unsupervised detection of the behavioral
e�ect of serotonergic stimulation, based on raw video from the 2-D camera using multi-scale video
prediction generative adversarial networks, and that the predictability of the mice during these two
di�erent states (non-stimulated and stimulated) seems to change signi�cantly.
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Figure 4.1: Serotonin stimulation increases predictability. We found a statistically signi�cant increase of both PSNR and
sharpness �uctuations when averaging all trials for each video and averaging across all videos. We performed a paired sample
t-test comparing stimulated and non-stimulated mice averaged across videos (N=12) and found a p value of 5.98 ·10−19 for
PSNR and 9.46 ·10−18 for sharpness.
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Figure 4.2: Unsupervised detection of serotonergic stimulation. Here we show in red the unsupervised detection of
the segments of the video where the mice were being stimulated. As explained in �g. 3.4 we de�ned a threshold with the
k-means algorithm to set a threshold for what we considered to be the line between baseline and non-baseline behavior. With
this we were able to detect 54% of the stimulation (this value was calculated as the ration between the amount detected in
the data from the average across videos and the entire �uctuation for stimulated). Here we show results only for PSNR. �e
same results are achieved by using sharpness as a predictability index and can be seen in the supplementary �gures section
in �g. 6.1

Predictability �uctuation correlates with speed

Given the previous results in [11], where they found that optogenetic stimulation of the seroton-
ergic neurons in the dorsal raphe nuclei caused a short-term decrease of the speed of the mice when
moving around in the open-�eld, we tested the relationship between the �uctuations of our predictabil-
ity indexes and the speed. We saw a high correlation between speed, and both PSNR and sharpness
(see �g. 4.3) which we would expect given that a slower mouse should be easier to predict. However, to
investigate if this correlation meant that the predictability index could be explained entirely by speed
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(a) (b)

Figure 4.3: Predictability �uctuation is highly correlated with speed.�e �uctuation of the PSNR (as well as sharpness
which we did not show for simplicity purposes) was highly correlated with the displacement speed of the mice with a pearson
correlation value of −0.82 for non-stimulated (a) and −0.87 for stimulated (b) for the average across videos (N=12)

we developed a strategy to assess predictability in a se�ing without displacement speed.

Increase of predictability is not explained only by displacement speed

We described above how the GAN approach enabled detection of the behavioral e�ect of the stim-
ulation. However, due to the high correlation between the speed of the mice and the �uctuation of
the predictability indexes, we hypothesized that we could be capturing only the e�ect of displacement,
rather than �ner behavioral information. We tackled this issue by introducing a pose-based analysis.
We generated displacement invariant videos where the mice were aligned, so that the only feature
changing in the screen was their pose (see �g. 3.6). We could still detect the e�ect on behavior (see
�g. 4.4), even in videos where there was no displacement, which we took as an indication that our
results did not rely solely on displacement speed and indicated that the e�ect of the stimulation also
a�ected the postural movements of the mice.

In addition, when we applied the k-means algorithm and set a threshold for detecting stimulated
portions of the video (see �g. 4.5) we also detected the stimulation e�ect and captured 42% of the
stimulation trial when considering average across videos (N = 12).

Summary

We were able to detect the e�ect of the stimulation using our approach.�e predictability indexes
signi�cantly increases when stimulation occurs. We detected this e�ect in an unsupervised manner and
the �uctuation of the predictability indexes were correlated with the displacement speed of the mouse,
they were not solely dependent on it given that we could still detect stimulation in videos where we
were capturing only changes in postural movement. We considered the model’s ability to detect the
stimulation e�ect even on displacement invariant videos as an indicator that predictability might be a
relevant feature to investigate behavior as a potential general-purpose tool to quantify deviations from
a state considered to be normal or baseline. �e amount of predictive information present in a certain
state of the mouse seemed to increase according to the optogenetic stimulation of the serotonergic
neurons.
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Figure 4.4: Increase of predictability is not explained only by displacement speed. �e results on the videos that
are invariant to displacement depicted here were similar to the detection on freely moving videos. We can see a signi�cant
increase in predictability. �e paired sample t-test showed a p value of 7.83 ·10−16 for PSNR and 5.94 ·10−17 for sharpness.
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Figure 4.5: Unsupervised detection of Serotonin stimulation in displacement invariant videos. We detected 42%
of the behavior a�ected by the stimulation when considering displacement invariant videos of the same mice analysed be-
fore. �ese results indicated to us the possibility that the change in the behavior was not only a�ecting the speed but also
the amount of predictive information within the state of the mouse. �is change in state enabled the model to predict the
con�guration of the pose di�erentially when considering stimulated (gold) and non-stimulated portions of the video (green).
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Chapter 5

Discussion

�e question we had at the beginning of this project was: can we identify and quantify changes
in behavior just by looking at videos without labelling the behavior in any way? �e brief version of
our conclusion is: yes. Using an unsupervised learning technique we were able to quantify behavior in
terms of its predictability. A�er learning a baseline for the behavior (non-stimulated mice in the case
of the dataset used) we saw a signi�cant increase of the predictability indexes from the baseline when
the mice were a�ected by optogenetic activation of the serotonergic neurons. �is ability to identify
the behavioral e�ect of serotonergic stimulation without labels or any supervision indicated that the
model developed a well de�ned representation of the mouse con�guration and its temporal dynamics,
and this representation was enough to di�erentiate between baseline behavior (non-stimulated) and
non-baseline (stimulated mice).

�ere are two likely explanations for why this could happen: one is that the behavior is less random
when the mice are being stimulated so therefore they become more predictable because the amount of
information in a previous state from the past carries more information about the behavior when the
mouse is being stimulated in comparison to when it is not. �e other would be solely on the grounds
of speed and the fact that a slower mouse in both videos was just easier to be predicted because it
moved around less on the time frame considered. Given that in the videos where the mice had their
pose aligned with the axis of the frame the results were comparable, the most likely explanation points
to an increase in the actual predictability of behavior. Given that there is no displacement that could
explain this increase only considering speed as a factor. It seems that serotonergic stimulation caused a
change in the organization of the movements making them more regular and more synchronized with
the past.

�is idea of training a generative model on non-stimulated mice and testing on both stimulated
and non-stimulated indicates that the behavior learned by the model is comparable in both conditions
but the organization of behavior when in the stimulated condition becomes more regular allowing for
be�er predictions.

�e fact that such predictability can be quanti�ed like this reinforces the claim about the hierarchical
organization of behavior by showing the possibility of quantifying how much information is stored in
a given sequence of actions allowing us to predict future actions of an animal. In cognitive science,
the concern with the cognitive structure of actions requires theories that point to a speci�c form of
organization that can be tested. Predictability as an index could represent an option on that direction
because it allows us to quantify how much information is stored in each node of the hierarchical tree and
therefore could potentially give insight about the distinction between proximal and distal intentions as
stated in the introduction of this thesis. An intention to act involves a representation of the future (an

29



5. DISCUSSION

anticipation) that could be translated to motor controls that store information about such future [20].
How predictable a certain body con�guration is could be related to what sequences were performed
previously and could give us information about whether or not a certain action was planned or not,
as well as how planned it was. If we could access a quantitative index of how much planning goes
into one action, we could perhaps access the location of such action within the cognitive structure that
potentially caused it.

In the future, an interesting project would be to analyse the latent space of the generative model
a�er having learned the representation of the behavior from the videos to assess what kind of infor-
mation was stored within the model that enabled it to di�erentiate between these two states. Using
other types of generative models such as variational auto encoders in an unsupervised way to a�empt
and segment the behavior in small motifs also represent an interesting path to take in order to under-
stand more about how the behavior is composed, a supervised version of this approach was already
undertaken in [27].

�is project constitutes to our knowledge the �rst documented application of a video prediction
technique to analyse behavior. Besides the novelty of the application, it raises interesting questions
about the possibility of considering predictability as a feature of behavior. How regular a behavior is
within a certain time frame seems to tell us a lot about whether or not the animal is within its baseline
behavior non perturbed by any brain speci�c stimulation.

�e generalization scope of the model , the novelty of the predictability index produced by a video
prediction approach and the so�ware tools developed for the realization of this project make it a valu-
able source for understanding more about the link between behavior and brain function as well as sheds
light on the cognitive underpinnings of actions.
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Chapter 6

Supplementary Figures
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Figure 6.1: Unsupervised detection of serotonergic stimulation using sharpness. (a) Here we show in red the unsu-
pervised detection of the segments of the video where the mice were being stimulated in freely moving videos. (b) Here the
same results using the pose-aligned videos. As we can see the results are similar to the ones obtained with the PSNR.
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